博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
HTTP:学习笔记二
阅读量:2154 次
发布时间:2019-05-01

本文共 3455 字,大约阅读时间需要 11 分钟。

HTTP协议

简单的HTTP协议

1. HTTP协议用于客户端和服务器端之间的通信

HTTP协议和TCP/IP协议族内的其他众多的协议相同,用于客户端和服务器之间的通信。请求访问文本或图像等资源的一端称为客户端,而提供资源响应的一 端称为服务器端。

2.通过请求和响应的交换达成通信

HTTP协议规定,请求从客户端发出,最后服务器端响应该请求并返 回。换句话说,肯定是先从客户端开始建立通信的,服务器端在没有 接收到请求之前不会发送响应。
客户端发送给某个 HTTP 服务器端的请求报文:请求报文是由请求方法、请求 URI、协议版本、可选的请求首部字段 和内容实体构成的。
请求如图:
在这里插入图片描述
接收到请求的服务器,会将请求内容的处理结果以响应的形式返回。
响应:
在这里插入图片描述

在起始行开头的 HTTP/1.1表示服务器对应的HTTP 版本。紧挨着的200 OK 表示请求的处理结果的状态码(status code)和原因 短语(reason-phrase)。下一行显示了创建响应的日期时间,是首部 字段(header field)内的一个属性。 接着以一空行分隔,之后的内容称为资源实体的主体(entity body)。 响应报文基本上由协议版本、状态码(表示请求成功或失败的数字代 码)、用以解释状态码的原因短语、可选的响应首部字段以及实体主体构成。

3.请求 URI 定位资源

当客户端请求访问资源而发送请求时,URI 需要将作为请求报文中的 请求 URI 包含在内。指定请求 URI 的方式有很多。
在这里插入图片描述
在这里插入图片描述
4.告知服务器意图的 HTTP 方法
在这里插入图片描述

5.HTTP 是不保存状态的协议

HTTP 是一种不保存状态,即无状态(stateless)协议。协议本身并不保留之前一切的请求或响应报文的信息。这是为了更快地处理大量事务,确保协议的可伸缩性,而特意把 HTTP 协议设 计成如此简单的。
可是,随着 Web 的不断发展,因无状态而导致业务处理变得棘手的情况增多了。比如,用户登录到一家购物网站,即使他跳转到该站的其他页面后,也需要能继续保持登录状态。但为了实现期望的保持状态功能,于是引入了 Cookie 技术。有了 Cookie 再用 HTTP 协议通信,就可以管理状态了。

6.使用 Cookie 的状态管理

Cookie 技术通过在请求和响应报文中写入 Cookie 信 息来控制客户端的状态。
Cookie 会根据从服务器端发送的响应报文内的一个叫做 Set-Cookie 的 首部字段信息,通知客户端保存 Cookie。当下次客户端再往该服务器 发送请求时,客户端会自动在请求报文中加入 Cookie 值后发送出 去。服务器端发现客户端发送过来的 Cookie 后,会去检查究竟是从哪一个客户端发来的连接请求,然后对比服务器上的记录,最后得到之前的状态信息。
在这里插入图片描述
7.持久连接节省通信量
HTTP 协议的初始版本中,每进行一次 HTTP 通信就要断开一次 TCP 连接。
使用浏览器浏览一个包含多张图片的 HTML页面时,在发送 请求访问 HTML页面资源的同时,也会请求该 HTML页面里包含的 其他资源。因此,每次的请求都会造成无谓的 TCP 连接建立和断 开,增加通信量的开销。
为解决上述 TCP 连接的问题,提出持久连接
**持久连接的特点:**只要任意一端 没有明确提出断开连接,则保持 TCP 连接状态。
持久连接旨在建立 1 次 TCP 连接后进行多次请求和响应的交互。
在 HTTP/1.1 中,所有的连接默认都是持久连接,但在 HTTP/1.0 内并 未标准化。虽然有一部分服务器通过非标准的手段实现了持久连接, 但服务器端不一定能够支持持久连接。毫无疑问,除了服务器端,客 户端也需要支持持久连接。
管线化: 持久连接使得多数请求以管线化(pipelining)方式发送成为可能。从 前发送请求后需等待并收到响应,才能发送下一个请求。管线化技术 出现后,不用等待响应亦可直接发送下一个请求。

HTTP 报文内的 HTTP 信息

1.HTTP 报文

用于 HTTP 协议交互的信息被称为 HTTP 报文。请求端(客户端)的 HTTP 报文叫做请求报文,响应端(服务器端)的叫做响应报文。 HTTP 报文本身是由多行(用 CR+LF 作换行符)数据构成的字符串文 本。HTTP 报文大致可分为报文首部和报文主体两块。两者由最初出现的 空行(CR+LF)来划分。通常,并不一定要有报文主体。
在这里插入图片描述
2. 请求报文及响应报文的结构
在这里插入图片描述
上图:请求报文(上)和响应报文(下)的结构
在这里插入图片描述
上图:请求报文的实例
在这里插入图片描述
上图:响应报文的实例
请求报文和响应报文的首部内容由以下数据组成。
请求行:包含用于请求的方法,请求 URI 和 HTTP 版本。
状态行:包含表明响应结果的状态码,原因短语和 HTTP 版本。
首部字段:包含表示请求和响应的各种条件和属性的各类首部。
一般有 4 种首部,分别是:通用首部、请求首部、响应首部和实体首 部。其他可能包含 HTTP 的 RFC 里未定义的首部(Cookie 等)。

3. 编码提升传输速率

HTTP 在传输数据时可以按照数据原貌直接传输,但也可以在传输过 程中通过编码提升传输速率。通过在传输时编码,能有效地处理大量 的访问请求。但是,编码的操作需要计算机来完成,因此会消耗更多 的 CPU 等资源。
报文主体和实体主体的差异:
报文(message) :是 HTTP 通信中的基本单位,由 8 位组字节流(octet sequence, 其中 octet 为 8 个比特)组成,通过 HTTP 通信传输。
实体(entity): 作为请求或响应的有效载荷数据(补充项)被传输,其内容由实 体首部和实体主体组成。
HTTP 报文的主体用于传输请求或响应的实体主体。
通常,报文主体等于实体主体。只有当传输中进行编码操作时,实体主体的内容发生变化,才导致它和报文主体产生差异。
压缩传输的内容编码:
为了使邮件容量变小,我们会先用 ZIP 压缩文件之后再添加附件发送。HTTP 协议中有一种被称为内容编码 的功能也能进行类似的操作。
内容编码指明应用在实体内容上的编码格式,并保持实体信息原样压缩。内容编码后的实体由客户端接收并负责解码。
常用的内容编码有以下几种:gzip(GNU zip)、 compress(UNIX 系统的标准压缩)、 deflate(zlib) 、identity(不进行编码)。

4.分割发送的分块传输编码

在 HTTP 通信过程中,请求的编码实体资源尚未全部传输完成之前, 浏览器无法显示请求页面。在传输大容量数据时,通过把数据分割成多块,能够让浏览器逐步显示页面。 这种把实体主体分块的功能称为分块传输(Chunked Transfer Coding)。
分块传输编码会将实体主体分成多个部分(块)。每一块都会用十六 进制来标记块的大小,而实体主体的最后一块会使用“0(CR+LF)”来标 记。使用分块传输编码的实体主体会由接收的客户端负责解码,恢复到编 码前的实体主体。

5.发送多种数据的多部分对象集合

HTTP 协议中采纳了多部分对象集合,发送的一份报文主体内可含有多类型实体,来容纳多份不同类型的数据(如:文本、图片、视频等多个不同类型的数据)。

6.获取部分内容的范围请求

以前,用户不能使用现在这种高速的带宽访问互联网,当时,下载一 个尺寸稍大的图片或文件就已经很吃力了。如果下载过程中遇到网络 中断的情况,那就必须重头开始。为了解决上述问题,需要一种可恢 复的机制。所谓恢复是指能从之前下载中断处恢复下载。 要实现该功能需要指定下载的实体范围。像这样,指定范围发送的请 求叫做范围请求(Range Request)。
对一份 10 000 字节大小的资源,如果使用范围请求,可以只请求 5001~10 000 字节内的资源。
执行范围请求时,会用到首部字段 Range 来指定资源的 byte 范围。 byte 范围的指定形式如下。
在这里插入图片描述
针对范围请求,响应会返回状态码为 206 Partial Content 的响应报 文。另外,对于多重范围的范围请求,响应会在首部字段 Content- Type 标明 multipart/byteranges 后返回响应报文。如果服务器端无法响应范围请求,则会返回状态码 200 OK 和完整的 实体内容。

转载地址:http://uqvwb.baihongyu.com/

你可能感兴趣的文章
Bagging 简述
查看>>
详解 Stacking 的 python 实现
查看>>
简述极大似然估计
查看>>
用线性判别分析 LDA 降维
查看>>
用 Doc2Vec 得到文档/段落/句子的向量表达
查看>>
使聊天机器人具有个性
查看>>
使聊天机器人的对话更有营养
查看>>
一个 tflearn 情感分析小例子
查看>>
attention 机制入门
查看>>
手把手用 IntelliJ IDEA 和 SBT 创建 scala 项目
查看>>
双向 LSTM
查看>>
GAN 的 keras 实现
查看>>
AI 在 marketing 上的应用
查看>>
Logistic regression 为什么用 sigmoid ?
查看>>
Logistic Regression 为什么用极大似然函数
查看>>
SVM 的核函数选择和调参
查看>>
LightGBM 如何调参
查看>>
用 TensorFlow.js 在浏览器中训练神经网络
查看>>
cs230 深度学习 Lecture 2 编程作业: Logistic Regression with a Neural Network mindset
查看>>
梯度消失问题与如何选择激活函数
查看>>